20 research outputs found

    A task and performance analysis of endoscopic submucosal dissection (ESD) surgery

    Get PDF
    BACKGROUND: ESD is an endoscopic technique for en bloc resection of gastrointestinal lesions. ESD is a widely-used in Japan and throughout Asia, but not as prevalent in Europe or the US. The procedure is technically challenging and has higher adverse events (bleeding, perforation) compared to endoscopic mucosal resection. Inadequate training platforms and lack of established training curricula have restricted its wide acceptance in the US. Thus, we aim to develop a Virtual Endoluminal Surgery Simulator (VESS) for objective ESD training and assessment. In this work, we performed task and performance analysis of ESD surgeries. METHODS: We performed a detailed colorectal ESD task analysis and identified the critical ESD steps for lesion identification, marking, injection, circumferential cutting, dissection, intraprocedural complication management, and post-procedure examination. We constructed a hierarchical task tree that elaborates the order of tasks in these steps. Furthermore, we developed quantitative ESD performance metrics. We measured task times and scores of 16 ESD surgeries performed by four different endoscopic surgeons. RESULTS: The average time of the marking, injection, and circumferential cutting phases are 203.4 (σ: 205.46), 83.5 (σ: 49.92), 908.4 s. (σ: 584.53), respectively. Cutting the submucosal layer takes most of the time of overall ESD procedure time with an average of 1394.7 s (σ: 908.43). We also performed correlation analysis (Pearson's test) among the performance scores of the tasks. There is a moderate positive correlation (R = 0.528, p = 0.0355) between marking scores and total scores, a strong positive correlation (R = 0.7879, p = 0.0003) between circumferential cutting and submucosal dissection and total scores. Similarly, we noted a strong positive correlation (R = 0.7095, p = 0.0021) between circumferential cutting and submucosal dissection and marking scores. CONCLUSIONS: We elaborated ESD tasks and developed quantitative performance metrics used in analysis of actual surgery performance. These ESD metrics will be used in future validation studies of our VESS simulator

    Endoscopic Submucosal Dissection: A Cognitive Task Analysis Framework Toward Training Design

    Get PDF
    Background: One of the major impediments to the proliferation of endoscopic submucosal dissection (ESD) training in Western countries is the lack of sufficient experts as instructors. One way to address this gap is to develop didactic systems, such as surgical simulators, to support the role of trainers. Cognitive task analysis (CTA) has been used in healthcare for the design and improvement of surgical training programs, and therefore can potentially be used for design of similar systems for ESD. Objective: The aim of the study was to apply a CTA-based approach to identify the cognitive aspects of performing ESD, and to generate qualitative insights for training. Materials and methods: Semi-structured interviews were designed based on the CTA framework to elicit knowledge of ESD practitioners relating to the various tasks involved in the procedure. Three observations were conducted of expert ESD trainers either while they performed actual ESD procedures or at a training workshop. Interviews were either conducted over the phone or in person. Interview participants included four experts and four novices. The observation notes and interviews were analyzed for emergent qualitative themes and relationships. Results: The qualitative analysis yielded thematic insights related to four main cognition-related categories: learning goals/principles, challenges/concerns, strategies, and decision-making. The specific insights under each of these categories were systematically mapped to the various tasks inherent to the ESD procedure. Conclusions: The CTA approach was applied to identify cognitive themes related to ESD procedural tasks. Insights developed based on the qualitative analysis of interviews and observations of ESD practitioners can be used to inform the design o

    Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians’ training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. </p> <p>Findings</p> <p>A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method.</p> <p>Conclusions</p> <p>The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure</p

    Texture based skin lesion abruptness quantification to detect malignancy

    No full text
    Abstract Background Abruptness of pigment patterns at the periphery of a skin lesion is one of the most important dermoscopic features for detection of malignancy. In current clinical setting, abrupt cutoff of a skin lesion determined by an examination of a dermatologist. This process is subjective, nonquantitative, and error-prone. We present an improved computational model to quantitatively measure abruptness of a skin lesion over our previous method. To achieve this, we quantitatively analyze the texture features of a region within the lesion boundary. This region is bounded by an interior border line of the lesion boundary which is determined using level set propagation (LSP) method. This method provides a fast border contraction without a need for extensive boolean operations. Then, we build feature vectors of homogeneity, standard deviation of pixel values, and mean of the pixel values of the region between the contracted border and the original border. These vectors are then classified using neural networks (NN) and SVM classifiers. Results As lower homogeneity indicates sharp cutoffs, suggesting melanoma, we carried out our experiments on two dermoscopy image datasets, which consist of 800 benign and 200 malignant melanoma cases. LSP method helped produce better results than Kaya et al., 2016 study. By using texture homogeneity at the periphery of a lesion border determined by LSP, as a classification results, we obtained 87% f1-score and 78% specificity; that we obtained better results than in the previous study. We also compared the performances of two different NN classifiers and support vector machine classifier. The best results obtained using combination of RGB color spaces with the fully-connected multi-hidden layer NN. Conclusions Computational results also show that skin lesion abrupt cutoff is a reliable indicator of malignancy. Results show that computational model of texture homogeneity along the periphery of skin lesion borders based on LSP is an effective way of quantitatively measuring abrupt cutoff of a lesion

    Partition-based optimization model for generative anatomy modeling language (POM-GAML)

    No full text
    Abstract Background This paper presents a novel approach for Generative Anatomy Modeling Language (GAML). This approach automatically detects the geometric partitions in 3D anatomy that in turn speeds up integrated non-linear optimization model in GAML for 3D anatomy modeling with constraints (e.g. joints). This integrated non-linear optimization model requires the exponential execution time. However, our approach effectively computes the solution for non-linear optimization model and reduces computation time from exponential to linear time. This is achieved by grouping the 3D geometric constraints into communities. Methods Various community detection algorithms (k-means clustering, Clauset Newman Moore, and Density-Based Spatial Clustering of Applications with Noise) were used to find communities and partition the non-linear optimization problem into sub-problems. GAML was used to create a case study for 3D shoulder model to benchmark our approach with up to 5000 constraints. Results Our results show that the computation time was reduced from exponential time to linear time and the error rate between the partitioned and non-partitioned approach decreases with the increasing number of constraints. For the largest constraint set (5000 constraints), speed up was over 2689-fold whereas error was computed as low as 2.2%. Conclusion This study presents a novel approach to group anatomical constraints in 3D human shoulder model using community detection algorithms. A case study for 3D modeling for shoulder models developed for arthroscopic rotator cuff simulation was presented. Our results significantly reduced the computation time in conjunction with a decrease in error using constrained optimization by linear approximation, non-linear optimization solver

    Local edge-enhanced active contour for accurate skin lesion border detection

    No full text
    Abstract Background Dermoscopy is one of the common and effective imaging techniques in diagnosis of skin cancer, especially for pigmented lesions. Accurate skin lesion border detection is the key to extract important dermoscopic features of the skin lesion. In current clinical settings, border delineation is performed manually by dermatologists. Operator based assessments lead to intra- and inter-observer variations due to its subjective nature. Moreover it is a tedious process. Because of aforementioned hurdles, the automation of lesion boundary detection in dermoscopic images is necessary. In this study, we address this problem by developing a novel skin lesion border detection method with a robust edge indicator function, which is based on a meshless method. Result Our results are compared with the other image segmentation methods. Our skin lesion border detection algorithm outperforms other state-of-the-art methods. Based on dermatologist drawn ground truth skin lesion borders, the results indicate that our method generates reasonable boundaries than other prominent methods having Dice score of 0.886 ±0.094 and Jaccard score of 0.807 ±0.133. Conclusion We prove that smoothed particle hydrodynamic (SPH) kernels can be used as edge features in active contours segmentation and probability map can be employed to avoid the evolving contour from leaking into the object of interest
    corecore